About Author: administrator

Posts by administrator

0

Biorxiv.: auth.: group Benton

An expression atlas of chemosensory ionotropic glutamate receptors identifies a molecular basis of carbonation detection

Juan Antonio Sanchez-AlcanizAna F SilberingVincent CrosetGiovanna ZappiaAnantha K SivasubramaniamLiliane AbuinSaumya Y SahaiThomas O AuerSteeve CruchetG. Larisa Neagu-MaierSimon G SprecherNilay YapiciRichard Benton
 
 

Abstract

Taste perception is thought to involve the encoding of appetitive and aversive chemical cues in food through a limited number of sensory pathways. Through expression analysis of the complete repertoire of Drosophila Ionotropic Receptors (IRs), a sensory subfamily of ionotropic glutamate receptors, we reveal that the majority of IRs is expressed in diverse peripheral neuron populations across gustatory organs in both larvae and adults, implying numerous roles in taste-evoked behaviours. We characterise Ir56d, which labels two anatomically-distinct classes of neurons in the proboscis: one represents a subset of sugar- and fatty acid-sensing neurons, while the other responds to carbonated solutions and fatty acids. Mutational analysis shows that IR56d, together with the broadly-expressed co-receptors IR25a and IR76b, is essential for physiological activation by carbonation and fatty acids, but not sucrose. We further demonstrate that carbonation is behaviourally attractive to flies (in an IR56d-dependent manner), but in a distinct way to other appetitive stimuli. Our work provides a valuable toolkit for investigating the taste functions of IRs, defines a molecular basis of carbonation sensing, and illustrates how the gustatory system uses combinatorial expression of sensory receptors in distinct neuron types to coordinate behaviour.

 

0

MBio.: co-auth.: GTF

 2018 Mar 20;9(2). pii: e00024-18. doi: 10.1128/mBio.00024-18.

In Vitro Culture of the Insect Endosymbiont Spiroplasma poulsonii Highlights Bacterial Genes Involved in Host-Symbiont Interaction.

Abstract

Endosymbiotic bacteria associated with eukaryotic hosts are omnipresent in nature, particularly in insects. Studying the bacterial side of host-symbiont interactions is, however, often limited by the unculturability and genetic intractability of the symbionts. Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with several Drosophila species. S. poulsonii strongly affects its host’s physiology, for example by causing male killing or by protecting it against various parasites. Despite intense work on this model since the 1950s, attempts to cultivate endosymbiotic Spiroplasma in vitro have failed so far. Here, we developed a method to sustain the in vitroculture of S. poulsonii by optimizing a commercially accessible medium. We also provide a complete genome assembly, including the first sequence of a natural plasmid of an endosymbiotic Spiroplasma species. Last, by comparing the transcriptome of the in vitro culture to the transcriptome of bacteria extracted from the host, we identified genes putatively involved in host-symbiont interactions. This work provides new opportunities to study the physiology of endosymbiotic Spiroplasma and paves the way to dissect insect-endosymbiont interactions with two genetically tractable partners.IMPORTANCE The discovery of insect bacterial endosymbionts (maternally transmitted bacteria) has revolutionized the study of insects, suggesting novel strategies for their control. Most endosymbionts are strongly dependent on their host to survive, making them uncultivable in artificial systems and genetically intractable. Spiroplasma poulsonii is an endosymbiont of Drosophilathat affects host metabolism, reproduction, and defense against parasites. By providing the first reliable culture medium that allows a long-lasting in vitro culture of Spiroplasma and by elucidating its complete genome, this work lays the foundation for the development of genetic engineering tools to dissect endosymbiosis with two partners amenable to molecular study. Furthermore, the optimization method that we describe can be used on other yet uncultivable symbionts, opening new technical opportunities in the field of host-microbes interactions.

KEYWORDS:

Spiroplasma; endosymbiosis; host-symbiont interaction

PMID: 29559567
0

Sci Rep.: co-auth.: C. Dessimoz and group Herr

 2018 Jul 18;8(1):10872. doi: 10.1038/s41598-018-28948-z.

GOATOOLS: A Python library for Gene Ontology analyses.

Abstract

The biological interpretation of gene lists with interesting shared properties, such as up- or down-regulation in a particular experiment, is typically accomplished using gene ontology enrichment analysis tools. Given a list of genes, a gene ontology (GO) enrichment analysis may return hundreds of statistically significant GO results in a “flat” list, which can be challenging to summarize. It can also be difficult to keep pace with rapidly expanding biological knowledge, which often results in daily changes to any of the over 47,000 gene ontologies that describe biological knowledge. GOATOOLS, a Python-based library, makes it more efficient to stay current with the latest ontologies and annotations, perform gene ontology enrichment analyses to determine over- and under-represented terms, and organize results for greater clarity and easier interpretation using a novel GOATOOLS GO grouping method. We performed functional analyses on both stochastic simulation data and real data from a published RNA-seq study to compare the enrichment results from GOATOOLS to two other popular tools: DAVID and GOstats. GOATOOLS is freely available through GitHub: https://github.com/tanghaibao/goatools .

PMID: 30022098
0

Diabetes.: co-auth.: group Thorens

 2018 Jun;67(6):1128-1139. doi: 10.2337/db17-1102. Epub 2018 Mar 21.

Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca2+ Mobilization From Acidic Stores in Pancreatic α-Cells.

Abstract

Adrenaline is a powerful stimulus of glucagon secretion. It acts by activation of β-adrenergic receptors, but the downstream mechanisms have only been partially elucidated. Here, we have examined the effects of adrenaline in mouse and human α-cells by a combination of electrophysiology, imaging of Ca2+ and PKA activity, and hormone release measurements. We found that stimulation of glucagon secretion correlated with a PKA- and EPAC2-dependent (inhibited by PKI and ESI-05, respectively) elevation of [Ca2+]i in α-cells, which occurred without stimulation of electrical activity and persisted in the absence of extracellular Ca2+ but was sensitive to ryanodine, bafilomycin, and thapsigargin. Adrenaline also increased [Ca2+]i in α-cells in human islets. Genetic or pharmacological inhibition of the Tpc2 channel (that mediates Ca2+ release from acidic intracellular stores) abolished the stimulatory effect of adrenaline on glucagon secretion and reduced the elevation of [Ca2+]i Furthermore, in Tpc2-deficient islets, ryanodine exerted no additive inhibitory effect. These data suggest that β-adrenergic stimulation of glucagon secretion is controlled by a hierarchy of [Ca2+]i signaling in the α-cell that is initiated by cAMP-induced Tpc2-dependent Ca2+ release from the acidic stores and further amplified by Ca2+-induced Ca2+ release from the sarco/endoplasmic reticulum.

PMID: 29563152
0

Diabetologia.: co-auth.: B. Thorens

 2018 May 12. doi: 10.1007/s00125-018-4629-8. [Epub ahead of print]

Protective role of the ELOVL2/docosahexaenoic acid axis in glucolipotoxicity-induced apoptosis in rodent beta cells and human islets.

Abstract

AIMS/HYPOTHESIS:

Dietary n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), are known to influence glucose homeostasis. We recently showed that Elovl2 expression in beta cells, which regulates synthesis of endogenous DHA, was associated with glucose tolerance and played a key role in insulin secretion. The present study aimed to examine the role of the very long chain fatty acid elongase 2 (ELOVL2)/DHA axis on the adverse effects of palmitate with high glucose, a condition defined as glucolipotoxicity, on beta cells.

METHODS:

We detected ELOVL2 in INS-1 beta cells and mouse and human islets using quantitative PCR and western blotting. Downregulation and adenoviral overexpression of Elovl2 was carried out in beta cells. Ceramide and diacylglycerol levels were determined by radio-enzymatic assay and lipidomics. Apoptosis was quantified using caspase-3 assays and poly (ADP-ribose) polymerase cleavage. Palmitate oxidation and esterification were determined by [U-14C]palmitate labelling.

RESULTS:

We found that glucolipotoxicity decreased ELOVL2 content in rodent and human beta cells. Downregulation of ELOVL2 drastically potentiated beta cell apoptosis induced by glucolipotoxicity, whereas adenoviral Elovl2 overexpression and supplementation with DHA partially inhibited glucolipotoxicity-induced cell death in rodent and human beta cells. Inhibition of beta cell apoptosis by the ELOVL2/DHA axis was associated with a decrease in ceramide accumulation. However, the ELOVL2/DHA axis was unable to directly alter ceramide synthesis or metabolism. By contrast, DHA increased palmitate oxidation but did not affect its esterification. Pharmacological inhibition of AMP-activated protein kinase and etomoxir, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme in fatty acid β-oxidation, attenuated the protective effect of the ELOVL2/DHA axis during glucolipotoxicity. Downregulation of CPT1 also counteracted the anti-apoptotic action of the ELOVL2/DHA axis. By contrast, a mutated active form of Cpt1 inhibited glucolipotoxicity-induced beta cell apoptosis when ELOVL2 was downregulated.

CONCLUSIONS/INTERPRETATION:

Our results identify ELOVL2 as a critical pro-survival enzyme for preventing beta cell death and dysfunction induced by glucolipotoxicity, notably by favouring palmitate oxidation in mitochondria through a CPT1-dependent mechanism.

KEYWORDS:

AMPK; Apoptosis; Ceramide; DHA; ELOVL2; Glucolipotoxicity; Mitochondrial β-oxidation; Pancreatic beta cells; Type 2 diabetes

PMID: 29754287
0

Biophysical Society Thematic Meeting, Mar. 31-Apr. 5, 2019

 

Multiscale Modeling of Chromatin: Bridging Experiment with Theory thematic 

Les Houches, France, March 31-April 5, 2019.

This meeting will bring together biologists, chemists, physicists, and mathematicians to discuss and launch collaborations to advance the field of chromatin modeling and applications through new conceptual approaches and perspectives.

The meeting will emphasize the unique multiscale features and properties of chromatin, from DNA to nuclear organiza­tion and interactions, and will encourage/enhance the devel­opment of multiscale models and experimental strategies needed to address all relevant components of the chromatin folding problem. Such multiscale approaches, combining ex­perimental data and modeling/informatics, are necessary to extract and identify structure/function relationships on vari­ous scales, from individual base pairs to whole genomes, and to pursue important applications in epigenetics and medicine.

Registration