Recent CIG publications Archive


Front Immunol.: auth.: group Desvergne

 2018 Nov 13;9:2573. doi: 10.3389/fimmu.2018.02573. eCollection 2018.

Lack of Adipocytes Alters Hematopoiesis in Lipodystrophic Mice.


Adult hematopoiesis takes place in the perivascular zone of the bone cavity, where endothelial cells, mesenchymal stromal/stem cells and their derivatives such as osteoblasts are key components of bone marrow (BM) niches. Defining the contribution of BM adipocytes to the hematopoietic stem cell niche remains controversial. While an excess of medullar adiposity is generally considered deleterious for hematopoiesis, an active role for adipocytes in shaping the niche has also been proposed. We thus investigated the consequences of total adipocyte deletion, including in the BM niche, on adult hematopoiesis using mice carrying a constitutive deletion of the gene coding for the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ). We show that Pparg Δ/Δ lipodystrophic mice exhibit severe extramedullary hematopoiesis (EMH), which we found to be non-cell autonomous, as it is reproduced when wild-type donor BM cells are transferred into Pparg Δ/Δ recipients. This phenotype is not due to a specific alteration linked to Pparg deletion, such as chronic inflammation, since it is also found in AZIPtg/+ mice, another lipodystrophic mouse model with normal PPARγ expression, that display only very moderate levels of inflammation. In both models, the lack of adipocytes alters subpopulations of both myeloid and lymphoid cells. The CXCL12/CXCR4 axis in the BM is also dysregulated in an adipocyte deprived environment supporting the hypothesis that adipocytes are required for normal hematopoietic stem cell mobilization or retention. Altogether, these data suggest an important role for adipocytes, and possibly for the molecular interactions they provide within the BM, in maintaining the appropriate microenvironment for hematopoietic homeostasis.


AZIPtg/+ mice; PPARγ null mice; bone marrow adipocytes; extramedullary hematopoiesis; hematopoiesis; inflammation; lipodystrophy; non-cell autonomous alteration of hematopoiesis in PPARγ null mice

PMID: 30483254



J Biol Chem.: auth.: group Herr

 2018 Nov 16;293(46):17754-17768. doi: 10.1074/jbc.RA118.004185. Epub 2018 Sep 17.

The conserved threonine-rich region of the HCF-1PRO repeat activates promiscuous OGT:UDP-GlcNAc glycosylation and proteolysis activities.


O-Linked GlcNAc transferase (OGT) possesses dual glycosyltransferase-protease activities. OGT thereby stably glycosylates serines and threonines of numerous proteins and, via a transient glutamate glycosylation, cleaves a single known substrate-the so-called HCF-1PROrepeat of the transcriptional co-regulator host-cell factor 1 (HCF-1). Here, we probed the relationship between these distinct glycosylation and proteolytic activities. For proteolysis, the HCF-1PRO repeat possesses an important extended threonine-rich region that is tightly bound by the OGT tetratricopeptide-repeat (TPR) region. We report that linkage of this HCF-1PRO-repeat, threonine-rich region to heterologous substrate sequences also potentiates robust serine glycosylation with the otherwise poor R p-αS-UDP-GlcNAc diastereomer phosphorothioate and UDP-5S-GlcNAc OGT co-substrates. Furthermore, it potentiated proteolysis of a non-HCF-1PRO-repeat cleavage sequence, provided it contained an appropriately positioned glutamate residue. Using serine- or glutamate-containing HCF-1PRO-repeat sequences, we show that proposed OGT-based or UDP-GlcNAc-based serine-acceptor residue activation mechanisms can be circumvented independently, but not when disrupted together. In contrast, disruption of both proposed activation mechanisms even in combination did not inhibit OGT-mediated proteolysis. These results reveal a multiplicity of OGT glycosylation strategies, some leading to proteolysis, which could be targets of alternative molecular regulatory strategies.


O-GlcNAcylation; O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT); enzyme mechanism; glycobiology; host-cell factor-1; post-translational modification (PTM)

PMID: 30224358



Neuron.: co-auth.: group Reymond

 2018 Nov 14. pii: S0896-6273(18)30952-8. doi: 10.1016/j.neuron.2018.10.044. [Epub ahead of print]

Mutations in MAST1 Cause Mega-Corpus-Callosum Syndrome with Cerebellar Hypoplasia and Cortical Malformations.


Corpus callosum malformations are associated with a broad range of neurodevelopmental diseases. We report that de novo mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCC-CH-CM) in the absence of megalencephaly. We show that MAST1 is a microtubule-associated protein that is predominantly expressed in post-mitotic neurons and is present in both dendritic and axonal compartments. We further show that Mast1 null animals are phenotypically normal, whereas the deletion of a single amino acid (L278del) recapitulates the distinct neurological phenotype observed in patients. In animals harboring Mast1 microdeletions, we find that the PI3K/AKT3/mTOR pathway is unperturbed, whereas Mast2 and Mast3 levels are diminished, indicative of a dominant-negative mode of action. Finally, we report that de novo MAST1 substitutions are present in patients with autism and microcephaly, raising the prospect that mutations in this gene give rise to a spectrum of neurodevelopmental diseases.


MAST1; cerebellar hypoplasia; corpus callosum; microdeletion; microtubules

PMID: 30449657



Bioinformatics.: auth.: group Dessimoz

 2018 Sep 1;34(17):i612-i619. doi: 10.1093/bioinformatics/bty615.

Prioritising candidate genes causing QTL using hierarchical orthologous groups.



A key goal in plant biotechnology applications is the identification of genes associated to particular phenotypic traits (for example: yield, fruit size, root length). Quantitative Trait Loci (QTL) studies identify genomic regions associated with a trait of interest. However, to infer potential causal genes in these regions, each of which can contain hundreds of genes, these data are usually intersected with prior functional knowledge of the genes. This process is however laborious, particularly if the experiment is performed in a non-model species, and the statistical significance of the inferred candidates is typically unknown.


This paper introduces QTLSearch, a method and software tool to search for candidate causal genes in QTL studies by combining Gene Ontology annotations across many species, leveraging hierarchical orthologous groups. The usefulness of this approach is demonstrated by re-analysing two metabolic QTL studies: one in Arabidopsis thaliana, the other in Oryza sativa subsp. indica. Even after controlling for statistical significance, QTLSearch inferred potential causal genes for more QTL than BLAST-based functional propagation against UniProtKB/Swiss-Prot, and for more QTL than in the original studies.


QTLSearch is distributed under the LGPLv3 license. It is available to install from the Python Package Index (as qtlsearch), with the source available from


Supplementary data are available at Bioinformatics online.

PMID: 30423067

Proc Natl Acad Sci U S A.: auth.: N.Hernandez

 2018 Nov 14. pii: 201815590. doi: 10.1073/pnas.1815590115. [Epub ahead of print]

Metabolic programming a lean phenotype by deregulation of RNA polymerase III.


As a master negative regulator of RNA polymerase (Pol) III, Maf1 modulates transcription in response to nutrients and stress to balance the production of highly abundant tRNAs, 5S rRNA, and other small noncoding RNAs with cell growth and maintenance. This regulation of Pol III transcription is important for energetic economy as mice lacking Maf1 are lean and resist weight gain on normal and high fat diets. The lean phenotype of Maf1 knockout (KO) mice is attributed in part to metabolic inefficiencies which increase the demand for cellular energy and elevate catabolic processes, including autophagy/lipophagy and lipolysis. A futile RNA cycle involving increased synthesis and turnover of Pol III transcripts has been proposed as an important driver of these changes. Here, using targeted metabolomics, we find changes in the liver of fed and fasted Maf1 KO mice consistent with the function of mammalian Maf1 as a chronic Pol III repressor. Differences in long-chain acylcarnitine levels suggest that energy demand is higher in the fed state of Maf1 KO mice versus the fasted state. Quantitative metabolite profiling supports increased activity in the TCA cycle, the pentose phosphate pathway, and the urea cycle and reveals changes in nucleotide levels and the creatine system. Metabolite profiling also confirms key predictions of the futile RNA cycle hypothesis by identifying changes in many metabolites involved in nucleotide synthesis and turnover. Thus, constitutively high levels of Pol III transcription in Maf1 KO mice reprogram central metabolic pathways and waste metabolic energy through a futile RNA cycle.


Maf1; RNA polymerase III; futile cycle; metabolic inefficiency; metabolomics

PMID: 30429315



PLoS One.: co-auth: GTF

 2018 Nov 12;13(11):e0206823. doi: 10.1371/journal.pone.0206823. eCollection 2018.

Short-lived AUF1 p42-binding mRNAs of RANKL and BCL6 have two distinct instability elements each.


Regulation of mRNA stability by RNA-protein interactions contributes significantly to quantitative aspects of gene expression. We have identified potential mRNA targets of the AU-rich element binding protein AUF1. Myc-tagged AUF1 p42 was induced in mouse NIH/3T3 cells and RNA-protein complexes isolated using anti-myc tag antibody beads. Bound mRNAs were analyzed with Affymetrix microarrays. We have identified 508 potential target mRNAs that were at least 3-fold enriched compared to control cells without myc-AUF1. 22.3% of the enriched mRNAs had an AU-rich cluster in the ARED Organism database, against 16.3% of non-enriched control mRNAs. The enrichment towards AU-rich elements was also visible by AREScore with an average value of 5.2 in the enriched mRNAs versus 4.2 in the control group. Yet, numerous mRNAs were enriched without a high ARE score. The enrichment of tetrameric and pentameric sequences suggests a broad AUF1 p42-binding spectrum at short U-rich sequences flanked by A or G. Still, some enriched mRNAs were highly unstable, as those of TNFSF11 (known as RANKL), KLF10, HES1, CCNT2, SMAD6, and BCL6. We have mapped some of the instability determinants. HES1 mRNA appeared to have a coding region determinant. Detailed analysis of the RANKL and BCL6 3’UTR revealed for both that full instability required two elements, which are conserved in evolution. In RANKL mRNA both elements are AU-rich and separated by 30 bases, while in BCL6 mRNA one is AU-rich and 60 bases from a non AU-rich element that potentially forms a stem-loop structure.

PMID: 30418981