Cold Spring Harb Protoc.: auth.: R. Benton

Cold Spring Harb Protoc. 2022 Nov 29. doi: 10.1101/pdb.top107803. Online ahead of print.

Chemosensory Coding in Drosophila Single Sensilla

Richard Benton 1Anupama Dahanukar 2Affiliations expand


The chemical senses-smell and taste-detect and discriminate an enormous diversity of environmental stimuli and provide fascinating but challenging models to investigate how sensory cues are represented in the brain. Important stimulus-coding events occur in peripheral sensory neurons, which express specific combinations of chemosensory receptors with defined ligand-response profiles. These receptors convert ligand recognition into spatial and temporal patterns of neural activity that are transmitted to, and interpreted in, central brain regions. Drosophila melanogaster provides an attractive model to study chemosensory coding because it possesses relatively simple peripheral olfactory and gustatory systems that display many organizational parallels to those of vertebrates. Moreover, nearly all peripheral chemosensory neurons have been molecularly characterized and are accessible for physiological analysis, as they are exposed on the surface of sensory organs housed in specialized hairs called sensilla. Here, we briefly review anatomical, molecular, and physiological properties of adult Drosophila olfactory and gustatory systems and provide background to methods for electrophysiological recordings of ligand-evoked activity from different types of chemosensory sensilla.